Предварительная тепловая обработка. Тепловая обработка мясных консервов

Физико-химические изменения, происходящие при предварительной тепловой обработке продуктов

Предварительную тепловую обработку продуктов широко применяют при производстве сахара из свеклы, в мясной, молочной, рыбной промышленности и в консервном производстве.

Предварительной тепловой обработкой называют кратковременное (5-15 мин) воздействие на сырье горячей (80-100°С) воды, пара, растительного масла или животного жира.

В различных технологических процессах предварительная тепловая обработка проводится с разными целями, например, с целью изменения объема, массы, размягчения сырья, увеличения клеточной проницаемости и так далее.

Изменение объема и массы сырья. Предварительная тепловая обработка может преследовать цель как увеличить объем и массу сырья, так и уменьшить их. Например, при изготовлении мясорастительных консервов, в рецептуру которых входят сухие бобовые продукты, сухой горох или фасоль, их бланшируют в течение 10-20 мин. При набухании зерен во время бланширования благодаря впитыванию воды объем и масса бобов увеличивается примерно в 2 раза.

Обычно бланшируют также рис, масса которого при этом увеличивается на 100%.

При изготовлении мясных и рыбных консервов, а также некоторых видов варенья и компотов сырье подвергают бланшированию и обжариванию, при которых теряется часть влаги в сырье, вследствие этого повышается массовая доля сухих веществ, и в банки, таким образом, закладываются более концентрированные продукты.

Размягчение сырья. Предварительной тепловой обработке для размягчения сырья подвергают главным образом растительное сырье. Размягчают плоды и овощи для того, чтобы их можно было плотнее уложить в банки, или для облегчения удаления несъедобных частей — кожицы, косточек, семян — при последующем протирании на ситах.

Размягчаются плоды при тепловой обработке по двум причинам.

При нагревании гидролизуется протопектин, склеивающий отдельные клетки между собой и цементирующий растительную ткань. При гидролизе протопектин переходит в растворимую форму, клетки отделяются друг от друга, плодовая ткань мацерируется, становится рыхлой и мягкой.

Однако для гидролиза протопектина требуется относительно продолжительное время тепловой обработки плодов (15-20 мин).

Известно, что при нагревании растительной ткани до 80-85°С в течение 3-4 мин плоды становятся мягкими. Это вызвано тем, что при нагревании коагулируются белки протоплазмы, цитоплазменная оболочка повреждается, осмотическое давление, обусловливающее твердость (упругость) плода, стравливается и плод размягчается.

Увеличение клеточной проницаемости. В ряде случаев цитоплазменные оболочки растительных клеток препятствуют протеканию технологических процессов, и их необходимо разрушить, так как именно эти полупроницаемые мембраны препятствуют полному извлечению плодовых соков при прессовании.

Без предварительной тепловой обработки свекловичной стружки практически невозможно извлечь сахар с требуемыми скоростью и глубиной, достигаемыми в производственных условиях. От того, насколько удачно будет проведен этот процесс, зависят степень извлечения сахара из свеклы, доброкачественность и рН диффузионного сока, неучтенные потери на диффузии и другие показатели.

Предварительная тепловая обработка свекловичной стружки проводится главным образом для того, чтобы разрушить основные барьеры на пути сахарозы из вакуоли клеток к верхней поверхности стружки и множество мембран на границе внешней и внутренней поверхности цитоплазмы, а также на границе разнообразных органелл, включенных в цитоплазму.

Главным фактором, определяющим пропускаемость свекловичной ткани в результате нагрева, является степень изменения (денатурация) белков цитоплазмы, где основную роль играют температура нагрева и концентрация сахарозы. Сахароза может тормозить денатурацию.

Наряду с денатурацией белков цитоплазмы в процессе предварительной тепловой обработки на проницаемость ткани влияют другие факторы: экстракция растворимых веществ как из вакуоли, так и из пектинцеллюлозных оболочек клеток, и физико-химические изменения оболочек клеток.

Режимы предварительной тепловой обработки, концентрации сахара и другие факторы могут по-разному влиять на проницаемость цитоплазмы и клеточных оболочек и приводить к разным суммарным эффектам. Например, повышение температуры усиливает денатурацию белков протоплазмы, улучшая ее проницаемость, но в то же время способствует более быстрому растворению гидрофильных составляющих клеточной оболочки, что ухудшает проницаемость последней.

Понижение концентрации сахарозы в растворе усиливает денатурацию белков, но в то же время способствует общему уменьшению коэффициента диффузии.

Для оценки предварительной обработки свекловичной стружки в процессе экстракции используют коэффициент степени проницаемости (отпаривания) φ, который представляет собой отношение коэффициента диффузии сахара из свекловичной стружки D к коэффициенту диффузии из стружки того же качества D o , прошедшей оптимальную тепловую обработку (φ = D/D о).

Существует три диапазона температур, при которых характер изменения проницаемости свекловичной стружки в зависимости от времени тепловой обработки имеет свои особенности.

В диапазоне температур 50-60°С существует индукционный период (3-5 мин), в течение которого тепловое воздействие не влияет на проницаемость стружки. В последующем проницаемость свекловичной стружки возрастает, но не достигает максимально возможной величины.

В диапазоне температур 60-75°С индукционный период отсутствует. Коэффициент диффузии возрастает в течение 10-15 мин теплового воздействия, после чего несколько уменьшается.

При температурах выше 75°С максимальные значения коэффициентов диффузии наблюдаются при самых непродолжительных периодах тепловой обработки — до 2,5 мин. После этого наступает период относительного постоянства величины коэффициента диффузии, который затем уменьшается.

Полагают, что наличие индукционного периода, выражающего сдвиг между началом теплового воздействия и изменением проницаемости ткани при температуре 50-60°С, связано с тем, что при этих температурах процессы денатурации, протекающие в несколько стадий, развиваются медленно. Поэтому от момента теплового воздействия до стадии денатурации, на которой начинает изменяться проницаемость протоплазмы, проходит определенный период времени — тем меньший, чем выше температура теплового воздействия: при 50°С — 5 мин, при 60°С — 3 мин. Один из наиболее эффективных технологических приемов, позволяющих повредить цитоплазменные мембраны, — бланширование плодов водой или паром. Повреждения цитоплазменных мембран и увеличения клеточной проницаемости можно достичь на разных температурных уровнях — начиная с 65°С, при соответствующей продолжительности обработки. Естественно, что чем выше температура бланширования, тем меньше необходимое время обработки.

 

Цитоплазменные мембраны являются препятствием также и в том случае, когда нужно не извлечь содержимое клеток, а наоборот, пропитать чем-либо клетку извне, например, сахаром или солью.

Непроницаемость цитоплазменных мембран является большой помехой при производстве варенья. При варке варенья протекают противоположные по направлению диффузионно-осмотические процессы, в результате которых из плодов извлекается влага, а внутрь клетки проникает сахар из окружающего плоды сиропа.

После варки плоды должны сохранять первоначальный объем и не быть сморщенными, соотношение между плодами и сиропом должно находиться на уровне 1:1. Исходя из этого, варенье надо варить так, чтобы количество извлекаемой при варке влаги W компенсировалось количеством впитываемого сахара С, то есть отношение W/C должно быть около единицы.

Если погрузить свежие плоды или их дольки в сахарный сироп, то в первые минуты, пока плоды еще не прогрелись и цела протоплазма, происходит лишь осмотическое отсасывание влаги, а диффузионное проникновение сахара внутрь плодовых клеток задерживается непроницаемой для сахара цитоплазменной оболочкой. Поэтому плоды сразу же и сморщиваются.

В дальнейшем цитоплазма при нагревании плодов повреждается, и сахар проникает в клетку. Но к этому моменту влаги извлечено уже слишком много, и нужной компенсации достичь не удается.

Если же плоды до варки пробланшировать, то клеточная проницаемость их возрастает, и при последующем погружении в сироп оба процесса — осмотическое отсасывание влаги из клеток и диффузионное перемещение сахара в клетку — будут идти одновременно. Плоды при этом останутся целыми, несморщенными.

Инактивирование ферментов. Кратковременное прогревание, или бланширование при 80-100°С, инактивирует большинство ферментов, прекращает их деятельность и тем самым предупреждает ферментативную порчу.

Потемнение нарезанных семечковых плодов на воздухе вызывается деятельностью окислительных ферментов. Схему окислительного процесса ферментативного потемнения нарезанных плодов можно выразить следующим образом.

На первой стадии фермент (обозначаемый буквой А) присоединяет молекулярный кислород воздуха и активирует его, образуя соединение типа пероксида:

А + О 2 → АО 2 .

Если в плодах имеется соответствующий субстрат восстановительного характера (дубильные вещества, полифенолы, обозначаемые буквой В), то образовавшийся органический пероксид АО 2 отдает кислород уже в атомарном виде, окисляя таким образом дубильные вещества, которые молекулярным кислородом воздуха не окисляются. Поэтому вторая стадия ферментативного процесса протекает по схеме:

АО 2 + 2В → А + 2ВО.

При этом фермент восстанавливается в первоначальном виде, а образующийся оксид ВО представляет собой темноокрашенное соединение, называемое иногда флобафеном.

Для предотвращения действия ферментов при консервировании плодов и овощей применяют кратковременное (5-10 мин) бланширование в воде при температуре 85-100°С.

Инактивирование ферментов лучше протекает в кислой среде, поэтому при бланшировании воду подкисляют лимонной или винно-каменной кислотой до концентрации 0,1-0,2%.

Гидролиз протопектина. Желеобразную консистенцию фруктовой продукции (повидло, мармелад, желе) придает растворимый пектин. В присутствии сахара и кислоты пектин образует студни.

Полагают, что желе получается тогда, когда осаждение пектина происходит в агрегатах мицелл в присутствии сахара, который действует как обезвоживающий агент, поглощающий сольватные оболочки, и в присутствии водородных ионов, нейтрализующих отрицательные заряды пектиновых молекул. Образовавшееся желе представляет собой сплетение фибрилл из пектиновых молекул, промежутки между которыми заполнены сахарным сиропом.

В некоторых плодах пектина содержится мало, и при производстве желеобразной продукции приходится добавлять так называемые желирующие соки, то есть соки из плодов с большим содержанием пектина.

Иногда пектиновых веществ в плодах много, но они находятся главным образом в нерастворимой форме в виде протопектина. В этом случае плоды обрабатываются так, чтобы прошел гидролиз протопектина и он превратился в растворимую форму. Чтобы гидролизовать протопектин, плоды бланшируют паром в течение 10-20 мин.

Удаление воздуха. Содержащийся в межклеточных пространствах растительной ткани воздух попадает в готовую продукцию, а также действует на промежуточных этапах на сырье, вызывает ухудшение качества продукта, способствует коррозии металлической тары, вызывает повышенное давление в банках при стерилизации. При бланшировании большая часть воздуха из сырья удаляется.

Улучшение вкусовых свойств. Для улучшения вкусовых свойств, придания продукту специфических вкусовых качеств применяют обжаривание в жире — при производстве мясных консервов, или растительном масле — при производстве рыбных и овощных консервов.

Наряду с улучшением вкуса при обжаривании продукт теряет некоторое количество влаги, в результате в нем повышается содержание сухих веществ, следовательно, и его калорийность.

Механизм образования вкусовых веществ и отделения влаги при нагреве такой же, как при варке или жаренье, когда продукт доводится до состояния кулинарной готовности.

ТЕПЛОВАЯ ОБРАБОТКА СЫРЬЯ

Тепловая обработка сырья является одним из основных приемов в технологическом процессе изготовления консервов.

Отдельные виды сырья перед измельчением, резкой, протиранием, смешиванием и фасованием подвергают тепловой обработке, которую проводят в горячей воде, водных растворах поваренной соли, щелочи, кислоты, горячих растительных или животных жирах, в среде водяного пара п путем соприкосновения с поверхностью нагрева.

Продолжительность и температура тепловой обработки различны в зависимости от цели ее проведения и скорости протекания тепловых, химических и биохимических процессов. Предварительной тепловой обработке подвергают овощи, семечковые н косточковые плоды, ягоды, бобовые, крупы, макаронные изделия и др.

С целью повышения пищевой ценности, улучшения органолеп-тнческих качеств отдельных видов консервов кабачки, баклажаны, свеклу, морковь, тыкву, лук, перец сладкий и др. обжаривают или пассеруют.

Тепловая обработка сырья вызывает изменения его структурно-механических, физико-химических и органолептических свойств и осуществляется с целью размягчения ткани сырья, увеличения или уменьшения его объема и массы, увеличения клеточной проницаемости и инактивации ферментов, придания продукту определенных органолептических качеств, повышения его пищевой ценности и др.

В зависимости от назначения тепловой обработки п способа передачи тепла продукту процесс называют бланшированием, развариванием, подогревом, обжаркой, пассерованием.

Бланширование

Бланшированием плодоовощного сырья называется кратковременная тепловая обработка при определенном температурном режиме в воде, паром или в водных растворах солей, сахара, органических кислот, щелочей. Бланширование является очень важной предварительной операцией, от которой в значительной мере зависят качество продукта п потери в производстве. В переводе на русский язык бланширование означает отбеливание (от французского слова blanchir — отбеливать). Однако в зависимости от вида сырья, технологии изготовления тех или иных консервов бланширование применяется для разных целей с достижением различных результатов, основные из которых: прекращение биохимических процессов в продукте, уничтожение большей части микроорганизмов, изменение объема и массы, повышение проницаемости протоплазмы клеток, изменение консистенции, удаление воздуха, летучих веществ, клейстеризация крахмала, сохранение естественного цвета продукта.

Деятельность ферментов может вызвать порчу продукта и нежелательные изменения даже при отсутствии микроорганизмов. При нагревании прекращаются биохимические процессы вследствие разрушения ферментной системы сырья, значительно уменьшается обсемененность за счет частичного уничтожения микроорганизмов, находящихся главным образом на поверхности сырых продуктов, поэтому для многих овощей бланширование преследует основную цель — разрушение ферментной системы, основой которой являются белки. Для этого обычно достаточно прогревания до температуры 70-75 °С.

Инактивация ферментов оказывает влияние на цвет продукта. Особое значение это имеет для семечковых плодов, так как действием окислительных ферментов объясняется потемнение плодов при их очистке и резке. Поэтому при производстве компотов, фруктов в сиропе, варенья, джемов и других видов консервов рекомендуется проводить бланширование яблок и груш. Так как инактивация ферментов лучше протекает в кислой среде, при бланшировании воду подкисляют лимонной или винной кислотой до концепт-рации 0,1-0,2% для снияения интенсивности биохимических процессов. Отдельные сорта яблок, особенно высококислотные, за счет гидролиза протопектина при нагревании и перехода его в растворимый пектин сильно развариваются. Для частичного предупреждения этого рекомендуется плоды бланшировать в 35%-ном сахарном сиропе при температуре 80-90°С в течение 4-5 мин. Оставшийся после бланширования сироп используют для заливки плодов, уложенных в банки.

Бланширование свеклы производят для размягчения ткани и сохранения цвета. При этом необходимо разрушить фермент тирозин азу. При окислении фермент образует меланины, вызывающие потемнение свеклы. Бланшируют свеклу паром в автоклавах или в непрерывнодействующих шпарителях в течение 15-20 мин при температуре 120 °С. У бланшированной свеклы кожица легко отделяется от мякоти. Бланширование свеклы до очистки и резки позволяет максимально сохранить красящие вещества — антоциа-ны, получить гладкую поверхность среза и равномерные формы нарезанных кусочков, так как свекла в сыром виде очень хрупкая.

При тепловой обработке в некоторых случаях происходит изменение цвета. Причиной может быть или изменение пигментов, или образование новых красящих веществ. Изменение цвета наблюдается у овощей, имеющих зеленую, белую или красно-фиолетовую окраску. Овощи с желтой и оранжевой окраской не изменяют цвет и устойчивы к действию тепловой обработки. При нагревании в зеленых овощах вследствие взаимодействия хлорофилла с органическими кислотами или кислыми солями этих кислот, содержащимися в клеточном соке, образуется феофитин — новое красящее вещество бурого цвета. Степень изменения зеленой окраски зависит от продолжительности тепловой обработки и концентрации органических кислот в продукте. Чем дольше проводится тепловая обработка, тем больше образуется феофитина и заметнее побурение овощей. Зеленые овощи лучше сохраняют свою окраску, если бланширование проводится в жесткой воде. Содержащиеся в ней кальциевые и магниевые соли нейтрализуют часть органических кислот и кислых солей клеточного сока.

При бланшировании происходит отбеливание отдельных видов сырья за счет выщелачивания или разрушения красящих веществ. Бланширование соцветий цветной капусты приводит к их отбеливанию вследствие разрушения красящих веществ, придающих соцветиям зеленый или желтоватый цвет.

Для облегчения удаления несъедобных частей — кожицы, семян, косточек ит. п., придания эластичности сырью, для облегчения проведения последующих операций и более плотной укладки его в банки отдельные виды сырья бланшируют для размягчения ткани. Размягчение сырья происходит вследствие химических и физико-химических преобразований в тканях при бланшировании. В основном это осуществляется за счет гидролиза протопектина, который переходит в растворимый пектин. Клетки отделяются друг от друга, плодовая ткань становится рыхлой и мягкой. Гидролиз способствует получению желеобразной консистенции.

Исследования различных сортов картофеля, белокочанной капусты и некоторых корнеплодов показали, что продолжительность их бланширования зависит не только от содержания в овощах и корнеплодах протопектина, но и от содержания веществ, способствующих его расщеплению. К таким веществам в основном относятся органические кислоты. Чем больше этих кислот содержится в \» сырье, тем меньше требуется времени для бланширования сырья. Аналогичное действие размягчения ткани достигается, если нагреть ткань до 80-85 °С хотя бы 3-4 мин. Это вызывается тем, что при нагревании до такой температуры пропсходит коагуляция белков протоплазмы, цитоплазменная оболочка повреждается, осмотическое давление, обусловливающее твердость плода, уменьшается и плод размягчается.

При тепловой обработке в той или иной степени уменьшаются объем и масса сырья. При тепловой обработке мяса и мясопродуктов происходит необратимая дегидратация белков с выделением в окружающую среду ранее связанной влаги вместе с растворенными в ней экстрактивными, минеральными веществами, витаминами и др.

В отличие от продуктов животного происхождения уменьшение массы овощей происходит не за счет выделения влаги денатурированными белками вместе с растворимыми веществами, а в основном за счет потерь растворимых веществ в результате их диффузии, удаления воздуха, содержащегося в межклеточных пространствах тканей растительного сырья. Так, при бланшировании огурцов происходит быстрое удаление воздуха из межклеточного пространства, ткань уплотняется, повышается ее упругость. При консервировании такие огурцы имеют хрустящую консистенцию. Уменьшение объема огурцов способствует более плотной укладке продукта в банки.

Удаление воздуха при бланшировании способствует сохранению витаминов. Кроме того, содержащийся в межклеточных пространствах растительной ткани воздух, попадая в готовую продукцию, а также действуя на сырье на промежуточных этапах, вызывает ухудшение качества продукта, способствует коррозии металлической тары, вызывает повышение парциального давления в банках при стерилизации.

Для некоторого ассортимента консервов в целях нормального заполнения тары, обеспечения необходимой консистенции продукта и нормируемого соотношения между составными компонентами консервов, правильного ведения процесса стерилизации требуется увеличение объема продукта, которое достигается путем бланширования. В основном это консервы с применением продовольственных фасоли и гороха, риса, перловой крупы, соевых бобов, макаронных изделий и др. В этом случае при бланшировании за счет впитывания воды крахмалом объем и масса продукта увеличиваются в 2-2,5 раза. В каяедом конкретном случае процент набухае-мости оговаривается технологическими инструкциями.

Бланшированием достигается удаление летучих или легкорас-падающихся веществ, придающих продуктам неприятный запах и образующих при соединении с металлом банки или крышки сернистые соли олова и железа, которые вызывают потеменение продукта, а также удаление веществ, придающих некоторым видам сырья неприятный горьковатый привкус. Например, для удаления горечи у баклажанов их бланшируют в кипящей воде или 1,5-2%-ном растворе КаОН, а для улучшения вкуса и удаления нестойких сернистых соединений белокочанную и краснокочанную капусту бланшируют в кипящей воде 1-2 мин, отдельные соцветия цветной капусты — 2-3 мин. Спаржу бланшируют в сетчатых корзинах в кипящем 2%-ном растворе поваренной соли в течение 1-3 мин для выщелачивания глюкозидов, придающих продукту горьковатый привкус, и для выпрямления изогнутых побегов.

В результате бланширования повышается проницаемость клеточных оболочек плодов и овощей, что облегчает пропитывание плодов сахарным сиропом (при варке варенья, джема, при изготовлении компотов), извлечение соков. Иногда для этой цели сливу, яблоки бланшируют в сахарном сиропе соответственно концентрацией 25 и 35 %. Для повышения выхода сока сливу, малину, черную смородину, бруснику, крыжовник бланшируют в воде или паром при температуре сырья не более 85 °С. Бланшировочную воду используют для бланширования нескольких партий. При этом часть экстрактивных веществ сырья переходит в раствор. Концентрация экстрактивных веществ постепенно увеличивается и достигает концентрации их в сырье. Такой раствор добавляют к отнятому из плодов соку, что значительно повышает выход сока, но несколько ухудшает его качество. Более рационально проводить бланширование плодов паром в ленточном шпарителе, а ягоды подогревать в двутельном котле при непрерывном помешивании. Плоды и овощи чаще всего бланшируют целыми. Продолжи-

Рпс. 14. Ленточный бланширователь со скребками:

1 — загрузочная воронка; 2 — ленточный транспортер; 3 — переливная труба; 4- съемная крышка; 5 — разгрузочный лоток; 6 — редуктор; 7 — электродвигатель; « — ванна; 9 — люк для очистки ванны от осадка тельность и температура бланширования зависят от вида, сорта, степени зрелости, качества сырья, его дальнейшего применения. Обычно бланширование проводится очень быстро, чтобы продукт сохранил вкус, цвет и аромат исходного сырья. При проведении этого процесса необходимо помнить, что недобланшированный продукт может вызвать бомбаж, а перебланшированный — разваривание консервов при стерилизации. Во избежание разваривания продукт после бланширования сразу же охлаждают водой.

Тепловые аппараты, предназначенные для предварительной тепловой обработки, классифицируют на бланширователи, шпари-тели и подогреватели в зависимости от способа и цели нагревания продукта. Аппараты каждой из этих групп подразделяются на аппараты периодического и непрерывного действия; работающие при атмосферном давлении, вакууме и избыточном давлении; с нагревательной камерой и барботерами.

Простейшим оборудованием для бланширования является дву~ тельный котел. В наружную полость подается пар с определенным давлением, обеспечивающим требуемую температуру. Внутрь котла заливаются вода или раствор. Плоды или овощи в сетках опускаются в горячий бланшировочный раствор и выдерживаются в течение необходимого времени.

Однако бланширование в котлах связано с большими затратами труда, неудобствами в работе, нарушает поточность производства и применяется только при выработке небольших партий продукции.

Наиболее широко используются в промышленности как водяные, так и паровые ленточные бланширователи (рис. 14) для

Рис. 15. Ковшовый бланшироватсль типа БК:

1 — привод; 2 — туннель; 3 — ковшовый транспортер; 4 — каркас; 5 — паропровод; 6 — водопровод бланширования сладкого перца, зеленого горошка, капусты, картофеля, яблок и других видов сырья.

Для бланширования зеленого горошка, капусты, моркови, картофеля применяются ковшовые бланширователи типа БК отечественного производства. Ковшовый бланширователь (рис. 15) состоит из стальной ванны-туннеля прямоугольного сечения, через которую проходит лента транспортера с ковшами. Ковши могут быть погружены в горячую воду, растворы или находиться под воздействием пара. Барботеры, к которым подается пар по паропроводу, расположены под и над лентой. Ванна сверху закрыта съемными крышками. Бланширователи БК обеспечивают нормальное проведение технологического процесса для широкого ассортимента сырья. У них широкий диапазон регулирования продолжительности тепловой обработки и высокая производительность.

Ленточные бланширователи БКП-200 и БКП-400 предназначены для бланширования нарезанных овощей перед сушкой в среде пара. Устанавливают их на овощесушильных заводах преимущественно к конвейерным сушилкам. Бланширователь БКП-200 (рис. 16) состоит из наклонного транспортера, заключенного в камеру. Над лентой установлены душевые устройства для ополаскивания сырья в начале и для охлаждения после бланширования. Предназначенные для бланширования, предварительно подготовленные п нарезанные овощи через загрузочный бункер и распределительный шнек равномерным слоем подаются на ленту пз проволочной сетки. Вместе с лентой продукт сначала проходит через первую секцию, где ополаскивается, затем — через вторую, где обрабатывается паром, и в третьей охлаждается холодной водой под душем.

Производительность аппарата зависит от скорости движения ленты, ширины и толщины слоя продукта. Для картофеля производительность составляет 200 кг/ч. Аналогичное устройство имеет и бланширователь БКП-400 производительностью 400 кг/ч по исходному сырью.

Барабанные бланширователи применяются в основном в линиях производства консервов пз зеленого горошка, но могут применяться для бланширования и других видов сырья.

В барабанном бланширователе основным рабочим органом является барабан. При его вращении продукт при помощи спирали перемещается в горячей воде от места загрузки к месту выгрузки.

Рис. 10. Бланширователь непрерывного действия типа БКП-200:

1 — распределительный шнек; 2 — наклонный трапспортер; 3 — промывочная камера; 4 — шпарительная камера; 5 — промы-вочно-остывочная камера

Продолжительность бланширования регулируется числом оборотов барабана в минуту.

В целях сокращения протяженностн технологической линии, продолжительности технологического процесса, сокращения расхода воды, снижения бактериальной обсемененности перед стерилизацией разработан способ бланширования зеленого горошка орошением горячей водой. При.этом тепловая обработка совмещена с отмывкой выделившихся при бланшировании зерен крахмала. Инспекция проводится перед бланшированием, процесс охлаждения исключен. Такая схема позволяет снизить микрообсеменен-ность зерен в банке перед стерилизацией па целый порядок и создать более благоприятные условия для проведения процесса стерилизации.

Бланширование зеленого горошка орошением горячей водой производится в бланширователе карусельного типа. Время и температура бланширования устанавливаются в зависимости от степени зрелости сырья.

В шнековом бланширователе основным рабочим органом является шнек, перемещающий продукт. При бланшировании продукта в горячей воде шнек установлен горизонтально, при бланшировании в среде водяного пара шнек установлен вертикально или под некоторым наклоном. Через полый вал шнека пар подается в желоб, где находятся продукт или вода п продукт.

Производительность бланширователей зависит от условий их работы, сорта сырья, его качества, степени зрелости и других факторов и может составлять от 500 до 8000 кг/ч.

Разваривание плодоовощного сырья

Разваривание плодоовощного сырья производится в кипящей воде или паром для разрушения структуры ткани и облегчения протирания при изготовлении фруктового илп овощного пюре, соков с мякотью, повидла, консервов для детского и диетического питания. При разваривании в сырье происходят те же физико-химические изменения, что и при бланшировании. Однако степень некоторых изменений несколько иная, так как тепловая обработка длится более длительное время.

Для разваривания плодоовощного сырья применяются аппараты непрерывного и периодического действия.

Шнековый шпаритель (рис. 17) очень прост по конструкции и часто изготавливается в механических мастерских консервного завода. Предназначается шнековый шпаритель для разваривания косточковых и семечковых плодов. Размеры шиарителя определяются расчетом, производительность зависит от диаметра и шага шнека и скорости его вращения. Преимуществом этого шпарителя является непрерывное разваривание, недостатком — разжижение продукта за счет смешивания с конденсатом.

Простейшую конструкцию имеет шахтный шпаритель системы С. М. Дмитриева (рис. 18), который представляет собой деревян-

Рис. 17. Шнековый шпаритель:

1 — загрузочный бункер; г — шнек; 3 — соединительный рукав; 4 — разгрузочная воронка; 5 — паропровод ную шахту прямоугольного сечения, разделенную перегородкой на две половины. Обе шахты оборудованы вертикально установленными барботерами. Сырье попадает в шахту сверху через загрузочный бункер и самотеком плоды проходят через шахту, где обрабатываются паром. Наличие двух шахт позволяет выдерживать плоды нужное время, не нарушая поточности работы; в то время как в одной шахте производят разваривание, вторая снова подготавливается к работе. Внизу корпус шпарителя немного расширяется, высота его 3 м. Под коническим дном шпарителя находится четырех-лопастный дозатор.

В линии изготовления пюре-образных консервов А9-КЛВ для разваривания сырья, не требующего длительной тепловой обработки, устанавливается не-прерывподействующая установка УРС-129 (рис. 19). Предварительно измельченное сырье

ис. 19. Разварпватель УРС-129:

1 — питатель; 2 — насос; 3 — труба для продукта; 4 — паровая труба наружного барботера; 5 — внутренняя труба барботера; 6 — паровая коммуникация; 7 — датчики температуры; 8 — корпус расширительной емкости; 9 — крышка; 10 — запорный клапан; 11 — переливная труба; 12 — направляющий шнек; 13 — спускной вентиль; 14- фильтр; 15 — паровой управляемый вентиль; 16 — манометр

поступает в питатель, насосом подается в трубу, где внутренним и наружным барботерами нагревается в течение нескольких секунд. Затем продукт поступает в расширительную емкость, выдерживается в течение 4-6 мин и через переливную трубу поступает на протирочную машину.

Наиболее качественное разваривание плодов, ягод и овощей получается в закрытом шпарителе (дигестере), показанном на рис. 20. Дигестер изготавливается из нержавеющей стали, рассчитан на единовременную загрузку сырья до 2 т. Чаще всего дигестер применяют при производстве консервов для детского питания.

Работа дигестера протекает следующим образом. Через бункер загружают сырье. Задвижку плотно закрывают и через штуцер подают острый пар. Одновременно выпускают воздух через кран до появления струи пара. После этого кран закрывают и создают в дигестере нужные давление и температуру. Вытеснение воздуха из дигестера в начале разваривания способствует сохранению витаминов, а также предохраняет продукт от потемнения. Когда достигнута необходимая температура в сырье немного размягчится, включают мешалку. Продолжительность обработки определяют в каждом конкретном случав отдельно в зависимости от вида и сорта сырья, размеров, степени зрелости, кислотности, а также от вида изготовляемых консервов.

Продолжительность. разваривания длится от 15 до 25 мин при температуре 100-110 °С. В процессе разваривания необходимо следить за равномерностью прогревания и не допускать перегрева продукта.

Подогрев продукта

Подогрев жидких и пюреоб-разных продуктов производится с различной целью и может являться как предварительной тепловой обработкой, так и операцией, облегчающей проведение других технологических процессов.

В основном подогрев осуществляется с целью размягчения ткани и облегчения удаления несъедобных частей — кожицы, семян и т. п. Это особенно важно а производстве концентрированных томатопродуктов, томатного сока и томатных соусов (если они вырабатываются из свежих томатов). Протопектин затрудняет отделение кожицы от мякоти, и это значительно повышает отходы при протирании, а подогрев снижает их па 8-8,5%. Подогрев также способствует сохранению пектина в продукте, так как при протирании измельченной массы без подогрева часть его уходит с отходами.

Растворимый пектин улучшает качество и внешний вид продукта, придавая ему однородность и препятствуя расслоению, которое особенно заметно в томатных продуктах с невысокой концентрацией сухих веществ.

Предварительный подогрев способствует удалению воздуха, содержащегося в межклеточных ходах плодовой ткани и остающегося в дробленой массе, разрушению ферментов и сохранению витаминов. Удаление воздуха предотвращает также образование пены при концентрировании.

Предварительный подогрев дробленой массы обеспечивает ее быстрое закипание в выпарном аппарате. Интенсивная конвекция кипящей массы препятствует образованию нагара на поверхности нагрева.

При массовом поступлении томатного сырья для равномерной загрузки производственной линии томатную массу подогревают до 85_100 °С в трубчатых подогревателях, а затем охлаждают до 20-

25 °С в пластинчатых теплообменниках. Подогретую и охлажденную массу можно сохранить в теплоизолированных сборниках вместимостью 25-100 м3 в течение суток, без теплоизоляции — в течение 10 ч. Емкости для хранения томатной массы должны быть оборудованы контурами циркуляции для предупреждения расслоения массы.

Нагревание продукта до определенной температуры имеет большое санитарно-гигиеническое значение. Пищевые продукты как растительного, так и животного происхождения всегда обсеменены микроорганизмами. Нагревание сырья в процессе тепловой обработки хоть и не обеспечивает полной стерильности продукта, но оказывает губительное действие на большинство плесневых и бесспоровых бактерий, а также вызывает переход спорообразую-щих бактерий в неактивную форму. В этих целях проводят дополнительный подогрев продуктов до различных температур перед фасованием, высокотемпературный нагрев отдельных их видов в процессе производства, мгновенную стерилизацию в потоке, выдержку с высокой температурой фасования для выработки продукции горячим розливом.

Для снижения микробиальной обсемененности томатопродук-тов протертую томатную массу перед увариванием нагревают до 125 °С, стерилизуют при этой температуре в течение 0,4 мин и затем охлаждают до 75-80 °С.

При использовании метода горячего розлива сок подогревают до температуры не ниже 97 °С и фасуют в специально подготовлен-

ную тару. Метод горячего розлива применяется при производстве отдельных видов фруктовых консервов, томатных соусов и др.

К подогревателям непрерывного действия относятся трубчатые, двухтрубные, спиральные, пластинчатые подогреватели.

Трубчатые (кожухотрубные) подогреватели (рис. 21) применяют для нагревания дробленой томатной массы, концентрированных томатопродуктов, фруктового пюре, фруктовых и овощных соков. При нагревании во избежание образования нагара необходимо следить, чтобы подача продукта не прекращалась.

Односекционный трубчатый вакуум-подогреватель КТП-2 (рис. 22) предназначен для подогрева различных овощных и фруктовых соков, дробленых томатов. Он представляет собой трубчатый многоходовой теплообменник, имеющий 12 последовательно соединенных труб из нержавеющей стали и заключенных в стальной кожух цилиндрической формы. С торцевых сторон установлены крышки. Площадь поверхности нагрева 4,2 м2, температура сока на выходе из подогревателя до 90 °С.

В двухсекционном подогревателе обе секции смонтированы на общей станине одна над другой. Одна из них служит для подогрева дробленой томатной массы, другая — для подогрева отжатого сока. Каждая секция регулируется и работает самостоятельно. Секция состоит из цилиндра, в котором горизонтально расположены трубки, последовательно соединенные между собой каналами, имеющи-

Рис. 22. Вакуум-подогреватель КТП-2:

1 — теплообменник; 2 — вакуум-бак; 3 — паровая магистраль; 4 — бак для во-> ды; 5 — насос

мися в крышках подогревателя. В паровом пространстве аппарата поддерживается вакуум.

Сравнительно низкая температура греющего пара (94-97 °С) в сочетании со значительной скоростью прохождения массы через подогреватель предупреждает образование нагара. Требуемая температура подогрева достигается благодаря большой длине пути массы в аппарате и высокому коэффициенту теплопередачи.

Двухтрубные подогреватели (типа «труба в трубе») применяются для нагревания соков, фруктового и томатного пюре. Двухтрубный подогреватель состоит из 8-12 секций.

Благодаря небольшому поперечному сечению трубы продукт может перемещаться с большой скоростью, что предотвращает образование нагара.

Двухтрубные подогреватели можно применять для охлаждения продукта, подавая в межтрубное пространство холодную воду или рассол.

Широкое применение для подогрева жидких пищевых продуктов нашли пластинчатые теплообменники (рис. 23), которые также используются для пастеризации фруктовых и ягодных соков. Они компактны и имеют большую производительность.

Пластинчатый подогреватель А1-ОНС-5 может быть применен для подогрева жидких продуктов в потоке.

Обжарка и пассерование овощей

При производстве закусочных, заправочных консервов, первых и вторых обеденных блюд, консервов для общественного питания и др. с целью повышения пищевой ценности и придания продукту определенных вкусовых качеств проводят обжарку или пассерова-

ние баклажанов, кабачков, свеклы, тыквы, моркови, перца сладкого, лука и др.

Обжаркой называется тепловая обработка овощей в жирах до уменьшения массы сырья свыше 30 % при определенном температурном режиме.

Пассерование — обжарка овощей с уменьшением массы до 30%.

Обжарку или пассерование проводят в растительном масле или животном жире в обжарочных печах, на плитах Крапивина при сравнительно высоких температурах. Растительное масло или животный жир в данном случае не только выполняет технологические функции, но и является промежуточным теплоносителем, передающим тепло от поверхности нагрева нечи к продукту.

Продолжительность обжарки и пассерования зависит от многих факторов и прежде всего от вида овощей, степени измельчения, температуры активного слоя масла, способа обя?арки, начального и конечного влагосодержания продукта и др., а также от удельной поверхности нагрева (величины поверхности нагрева, приходящейся на 1 м2 зеркала печи) и составляет для овощей 5-16 мин.

Для каждого конкретного случая продолжительность обжарки устанавливается опытным путем. Она должна обеспечивать истинный процент ужарки, установленный нормами и требованиями к качеству обжаренного продукта.

Для обжарки и пассерования применяются рафинированные растительные масла — подсолнечное, кукурузное, хлопковое и соевое, жиры свиной топленый, говяжий, бараний или костный, маргарин, масло коровье сливочное или топленое. При выборе жира для конкретного технологического процесса учитывают его биологическую ценность, органолептические свойства и физико-химические показатели. Важнейшими из этих показателей являются температура плавления и застывания, коэффициент преломления, вязкость, удельный вес, кислотное, йодное, перекисное и ацетильное числа. Вкус, запах, цвет, прозрачность, наличие отстоя и консистенция жиров имеют большое значение как для качества готового продукта, так и для правильного проведения процесса обжарки и пассерования.

Процесс обжарки и пассерования овощей представляет собой сложный комплекс физических, химических, физико-химических и технологических явлений, усложненный тепло-, массообменом и впитыванием масла.

Под воздействием тепла в продукте протекает ряд связанных между собой физических и химических процессов, в результате которых происходят выделение и удаление части влаги, впитывание масла, объемная усадка продукта, выделение газов, повышение давления внутри продукта, увеличение пористости, а также изменение плотности и теплоемкости продукта. В процессе обжарки свертываются белки протоплазмы клеток, клетки сжимаются, увеличиваются межклеточные ходы, продукт уменьшается в объеме в 2-3 раза. Углеводы также видоизменяются: крахмал частично переходит в декстрин, сахара карамелизуются, протопектин переходит в пектин, продукт становится мягким п легкоусвояемым. Изменяются структура ткани и плотность овощей.

В процессе обжарки с поверхности загруженных в горячее масло овощей и корнеплодов испаряется влага. Поскольку концентрация влаги во внутренних слоях оказывается больше, чем на поверхности, то содержание сухих веществ в поверхностных слоях постоянно увеличивается; за счет разности концентраций влага диффундирует из внутренних слоев в наружные.

Температура, при которой должны вестись обжарка и пассерование, выбирается так, чтобы испарение влаги с поверхности несколько опережало поступление ее из внутренних слоев. Тогда через некоторое время поверхностный слой обезвоживается, образуется корочка золотистого цвета и продукт получает специфический вкус и запах, свойственный обжаренному. Образование корочки происходит за счет начальной стадии карамелизации углеводов — Сахаров, крахмала, целлюлозы, пектина, содержащихся в обжариваемом продукте.

Это происходит тогда, когда влагосодержание продукта в поверхностном слое понизится настолько, что даст возможность температуре подняться выше 100 °С.

При излишне высокой температуре влага с поверхностных слоев очень быстро испаряется, поверхность продукта начинает обугливаться, а внутренние слои остаются сырые, так как влага из внутренних слоев не успевает поступить на место испарившейся. При высокой температуре происходят глубокий распад и карамелиза-ция углеводов, с чем связано ухудшение цвета и вкуса продукта. Одновременно ускоряются процессы порчи масла. Порча масла во время обжарки во многом зависит от его первоначальных свойств, и в целях повышения качества растительные масла рафинируют, дезодорируют, гидрируют (содержание ненасыщенных жирных кислот в подсолнечном масле должно быть не более 0,3-0,4%, в хлопковом — не более 0,2-0,3%). Цветность по йоду для подсолнечного масла 10-12%, хлопкового — 8-16%, йодное число — соответственно 125-145, 101-116. Для обжарки должно применяться рафинированное подсолнечное или хлопковое масло не ниже I сорта.

При пониженной температуре обжарки процессы испарения и диффузии уравновешиваются, корочка образуется очень медленно или вовсе не образуется. Зато внутренние слои продукта перевариваются и становятся рыхлыми. Вкусовые качества такого продукта низкие.

Вопрос получения обжаренного продукта надлежащего качества, в котором бы гармонично сочетались такие показатели, как видимая ужарка, массовая доля сухих веществ, жира, вкус, аромат, внешний вид, достаточно сложен. Поэтому в основном регламент обжарки устанавливается с учетом всех вышеперечисленных факторов и о готовности продукта судят по внешнему виду и вкусу, а также по проценту ужарки и проценту впитываемости масла. Эти

показатели нормируются для каждого вида овощей и вида продукции.

Процент ужарки различают видимый и истинный. Видимый процент ужарки показывает процентное уменьшение массы сырья при обжаривании. Его определяют по формуле

(А — В) 1П„

х=— -100,

где х — видимый процент ужарки, %; А — масса сырья до обжарки, кг; В — масса обжаренного продукта, кг.

Для определения видимого процента ужарки взвешивают необходимое количество исходного сырья, загружают его в сетку, обжаривают, дают стечь маслу в течение 3 мин, снова взвешивают и вычитают массу предварительно взвешенной тары.

Величиной видимого процента ужарки пользуются для контроля производства, а также в технологических расчетах для определения норм расхода сырья на единицу готовой продукции.

Термин «видимый» означает, что это изменение массы обжариваемого сырья видно, производя взвешивание на весах, хотя данная потеря в массе не является истинной.

Истинный процент ужарки показывает действительную потерю влаги при обжарке в процентах к исходному сырью, т. е. учитывает, что часть влаги заменена впитавшимся в продукт при обжаривании маслом, поэтому истинный процент улеарки всегда больше видимого.

Этот показатель необходим для проведения теплотехнических расчетов.

Истинный процент ужарки определяют по формуле

(А-В± ,00+£ 1 А А

где х\ — истинный процент ужарки, %; У — количество впитываемого масла, °/о к массе обжаренного продукта.

В зависимости от вида и назначения сырья видимый процент ужарки колеблется от 17 до 50, а истинный — от 24 до 64. Впитывание масла (к массе обжаренного продукта) у большинства видов сырья составляет 7-13%, в отдельных случаях эти цифры значительно больше (27% у лука, 17,5% у смеси моркови, белых кореньев и лука).

Обжарка овощей в горячем растительном масле осуществляется несколькими отличающимися между собой способами. Самое широкое распространение получил способ обжарки в глубоком слое, когда продукт полностью погружен в масло. Реже обжаривают в тонком слое, когда только часть продукта погружена в масло.

Преимуществом способа обжарки в глубоком слое является возможность легко перемешивать и перемещать продукт, передавать тепло, необходимое на обжарку, по всей поверхности кусочка продукта, недостатком — необходимость большого объема масла, меньшая по сравнению с другими методами интенсивность испарения влаги.

Обжарка овощей ведется при определенной температуре, различной для разных видов овощей. Максимальная температура при обжарке баклажанов 135-140°С, кабачков — 125-135, корнеплодов — 120-125, лука — 140 °С.

Продолжительность обжарки зависит от вида сырья, процента ужарки, температуры активного слоя масла, удельной поверхности нагрева печи и др. и составляет для овощей 5-16 мин.

Обжарка сырья в масле при пониженной температуре не рекомендуется, так как при этом увеличивается продолжительность процесса, снижается производительность печи, что приводит к уменьшению коэффициента сменяемости масла и ухудшает показатели, характеризующие качество масла и готовой продукции.

Для обжарки в основном применяют так называемые паромас-ляные обжарочные печи, в которых в качестве теплоносителя используется насыщенный водяной пар. В настоящее время на большинстве консервных заводов обжарка проводится на автоматических обжарочных паромасляных печах АПМП-1, на некоторых эксплуатируются ранее выпускавшиеся механизированные печи М-8.

В начале работы ванну печи заполняют водой, затем загружают масло так, чтобы оно покрыло греющую камеру и находящиеся над ней сетки с продуктом. Свежее растительное масло всегда содержит небольшое количество воды. Воду из масла удаляют путем прокаливания до загрузки в него продукта и ведения процесса обжарки во избежание вспенивания и выброса масла из печи. Прокаливают подсолнечное масло при температуре 160-180 °С, хлопковое-при 180-190 °С до прекращения пенообразования. Продолжительность прокаливания зависит от содержания влаги в масле и в основном не превышает 1 ч. Если этого не сделать, то пузырьки выделяющегося при обжарке водяного пара образуют очень стойкую пену за счет содержания в продукте белков, пектина и других пенообразователей. Проведение прокаливания масла обязательно и в целях безопасности работы, рационального расходования масла, сохранения его качества, правильного ведения процесса обжарки. Перед использованием масло фильтруют через сито из нержавеющей стали с диаметром отверстий 0,8-1 мм.

После прокаливания в печь загружают сетки с предварительно подготовленными овощами и корнеплодами. Процесс обжарки — сложный технологический процесс. Как уже описывалось выше, под воздействием тепла в продукте протекает целый ряд связанных между собой физических, химических процессов, происходящих в сырье и масле. Перенос влаги и тепла в продукте является единым процессом, связанным с внешним тепломассообменом. От правильности проведения процесса обжарки зависят качество обжариваемого продукта, рациональное расходование масла. Многолетними опытами установлено, что при неправильной организацпи технологического процесса качество масла быстро ухудшается п уже через 3-4 дня оно становится совершенно непригодным для пищевых целей и подлежит передаче на технические нужды. Ухудшение качества растительного масла приводит к резкому снижению качества обжариваемого в нем сырья.

Качество масла в процессе обжарки меняется под воздействием различных факторов: высокой температуры водяных паров, выделяющихся из сырья при обжарке, воздуха, соприкасающегося с маслом на большой поверхности, качества резки овощей и корнеплодов, непрерывности работы, полной загрузки печи продуктом, уровня масла в печи, уровня водяной подушки, граничащей с маслом и приводящей к образованию эмульсии масла.

Наибольшие изменения масла происходят под действием водяных паров, выделяющихся из сырья при обжарке. В этом случае резко увеличивается кислотное число масла за счет гидролиза жира и образования свободных жирных кислот типа олеиновой, пальмитиновой, стеариновой и т. п. и глицерина. Наличие свободных жирных кислот придает горечь маслу. Выделяющийся при распаде глицерина альдегид акролеин легко улетучивается, действуя на глаза рабочих, вызывает слезотечение. Вследствие распада жирных кислот кислотность масла очень быстро увеличивается и происходит альдегидное прогоркание. В дальнейшем появление альдо-кислот и кетонов усиливает прогоркание масла и придает ему неприятный запах. Заметно изменяются и другие показатели: возрастают удельный вес, коэффициент преломления света, его вязкость, снижается йодное число. Поскольку наиболее характерными показателями качества масла являются кислотное число и органолепти-ческие показатели, то предельное значение кислотного числа нормируется. В свежем масле оно обычно не превышает 0,4, при нормальной работе печи не поднимается выше 3. При кислотном числе 4,5 и более масло в печи заменяется полностью. Кислотное число масла выражает количество миллиграммов едкого кали, пошедшее на нейтрализацию свободных жирных кислот, содержащихся в 1 г масла. Наличие свободных жирных кислот способствует дальнейшему распаду масла, и нарастание кислотного числа резко ускоряется по мере его разложения. Поэтому не рекомендуется смешивать масло с высоким кислотным числом со свежим, а необходимо обеспечить быструю сменяемость его в печи.

Масло должно расходоваться на впитывание овощами и заменяться свежим до того, как начинается процесс разложения. Скорость замены масла в печи определяется показателем, который носит название коэффициента сменяемости масла. Коэффициентом сменяемости масла к называют отношение суточного расхода масла И7 (в кг) к среднему количеству масла й (в кг), единовременно находящегося в печи, т. е. к=~\¥/

Чем выше коэффициент сменяемости масла, тем меньше его порча. Для сохранения кислотного числа на низком уровне коэффициент сменяемости масла должен быть не ниже 1,2.

На коэффициент сменяемости масла оказывают влияние неполное использование зеркала масла, завышение высоты активного и пассивного слоев, периодический способ его долива, продолжительность остановки в работе аппарата, низкий коэффициент использования аппарата, недостатки конструктивного характера некоторых систем обжарочных аппаратов.

Масло, заполняющее ванну, по высоте условно делят на три слоя: активный слой, находящийся над нагревательной камерой, в которой происходит обжарка сырья; средний слой (центральный), в котором размещается нагревательная камера и осуществляется нагрев масла; пассивный слой, расположенный под нагревательной камерой и служащий для ее изоляции от соприкосновения с водой.

Обжарочная печь АПМП-1 (рис. 24) представляет собой загрузочный агрегат, состоящий из загрузочно-дозирующего устройства, собственно печи и устройства для фильтрации и отстаивания масла. В качестве загрузочно-дозирующего устройства использован элеватор типа «гусиная шея». Лента транспортера в месте загрузки сырыми овощами движется горизонтально, затем опускается в ванну печи под углом 36° и движется через всю ванну вначале в первом отсеке, затем во втором, совершая путь в масле 5-6,5 м. Из ванны лента транспортера выходит также под углом примерно 36°, перемещается под ванной печи в корытообразном поддоне, в котором собирается стекающее с транспортера и обжарочного продукта масло. На поворотных звездочках продукт выгружается из ковшей и по лотку перемещается на передаточный транспортер или в охладитель. Полному удалению обжаренных овощей, корнеплодов способствует вибратор, встряхивающий ковшовую ленту транспортера.

Над ванной осуществляется принудительная вентиляция для улавливания и удаления паров и газов, образующихся при обжарке овощей, а также угара масла.

Скорость движения ленты плавно регулируется, и продолжительность обжарки можно варьировать от 4 до 16 мин.

Смену воды в водяной подушке производят 1-2 раза в сутки, многократно выпуская воду с осевшими в ней частицами продукта. Это делается также и во избежание нагрева воды, которая, за-

кипев, может вызвать выброс масла. Температура верхних слоев воды не должна превышать 60 °С. При остановках печи на длительный срок (более 8 ч) масло охлаждается и откачивается в отстойный и фильтрационные баки.

Масло в обжарочной печи в основном расходуется на впитывае-мость продуктом (от 7 до 27% к массе обжаренного продукта), на частицы продукта, падающего в воду при обжарке. Часть масла теряется с водой, уходящей из аппарата (до 1 % к массе обжаренного сырья), с сетками и продуктом при их выгрузке, имеются потери в виде угара.

Большое значение для качества продукции и экономии сырья и масла имеет правильная организация производства, поддерживаемого постоянного по времени и параметрам технологического режима обжарки при максимальной загрузке сырья. Долив масла в печь необходимо осуществлять постоянно, поддерживая минимально возможную высоту активного слоя масла.

Пассерование овощей производят в ненрерывнодействующей установке в тонком слое жира с однократным его использованием либо в газовых или электропечах с инфракрасным излучением, либо в котлах с паровым обогревом системы Коренмана, либо в печах Крапивина и других аппаратах, обеспечивающих хорошее качество пассерования овощей. Пассерование овощей по протекающим в них процессам мало чем отличается от обжарки, практически только меньшим количеством удаляемой из овощей влаги и тем, что проводится оно при более низких температурах.

Продолжительность пассерования устанавливается на каждом заводе на основании опытных обжарок каждого вида сырья, исходя из особенностей поверхности нагрева, давления пара и других факторов. Готовность пассерованных овощей определяют взвешиванием и по органолептическим показателям.

Предварительная тепловая обработка сырья

Технологические цели предварительной тепловой обработки сырья. Изменения белков, жиров, углеводов, витаминов при тепловой обработке в зависимости от состава продукта и режимов обработки.

Цели и режимы бланширования в зависимости от вида сырья и его дальнейшего использования. Бланширователи ленточные, ковшовые, барабанные, шнековые. Их устройство, достоинства, недостатки, основные характеристики.

Цели и режимы обжаривания. Изменения в сырье при обжаривании. Ужарка истинная и видимая. Изменения в масле при обжаривании. Коэффициент сменяемости. Устройство обжарочных печей и их основные характеристики.

Варка и уваривание. Цели, режимы, способы осуществления. Варка и уваривание при атмосферном давлении и под вакуумом.

Копчение и обжарка. Состав коптильного дыма и взаимодействие компонентов дыма с продуктом. Изменения в продуктах при копчении. Электрокопчение. Режимы горячего и холодного копчения. Коптильные препараты, их получение и использование. Дымогенераторы.

Порционирование, закатка, маркировка и сортировка банок

Порядок заполнения и укладки составляющих компонентов в банки. Требования к массе нетто и соотношению составных частей. Порционирование и фасование вручную и механизированно. Автоматическое дозирование компонентов. Контрольное взвешивание, закатка, маркировка банок. Проверка герметичности.

Термическая обработка, упаковка и хранение банок

Воздействие высоких температур на микроорганизмы при стерилизации консервов. Понятие о «промышленной стерильности». Стерилизаторы периодического и непрерывного действия, их достоинства и недостатки.

Пастеризация консервов. Режимы и продолжительность. Тиндализация. Качество пастеризованных консервов.

Сортировка и отбраковка банок. Виды производственного брака: активный подтек, пассивный подтек, «птички», вакуумная деформация. Использование отбракованных консервов.

Упаковка банок и маркировка тары. Режимы хранения консервов и допустимая продолжительность. Изменения в консервах при хранении.

Введение

1.1 Материалы для бетона

1.2 Подбор состава бетона

1.3 Габаритные размеры изделий

2. Описание технологического процесса изготовления изделий

3. Выбор и обоснование режима ТВО

4. Определение габаритных размеров и требуемого количества тепловых агрегатов

5. Описание конструкции установки и порядок ее работы

6. Теплотехнический расчет

6.1 Расчет теплоты для нагрева изделий определяем по формуле

6.2 Расчет теплоты для нагрева форм

6.3 Расчет потерь теплоты через ограждающие конструкции установки

6.4 Теплота экзотермических реакций гидратации цемента

7. Определение удельных часовых расходов теплоты и теплоносителя

8. Расчет системы теплоснабжения

9. Методы контроля расхода пара дифманометром

10. Охрана труда и техника безопасности

Литература

Введение

Тепловую обработку строительных материалов и изделий целесообразно рассматривать в двух аспектах. С одной стороны следует проанализировать пути превращения сырьевых материалов и готовую продукцию или полуфабрикат в процессе тепловой обработки. Эта задача сугубо технологическая. С другой стороны необходимо рассмотреть работу тепловых установок (пропарочных, сушильных, обжиговых), которая определяется законами теплотехники.

При тепловой обработке в материалах и изделиях происходят физико-химические превращения, формируется структура, идут процессы тепло и массопереноса, возникает напряженное состояние. Взаимозависимость и сложность этих явлений предопределили на начальных этапах эмпирический характер развития данной отрасли науки. Постепенно накапливались экспериментальные данные об этих явлениях, причем из-за их сложности в основном изучалась динамика качественных изменений отдельных процессов.

Результаты исследований с использованием законов физики, химии и прикладных наук позволили создать предпосылки для математического описания процессов с целью создания теоретических основ, без которых невозможно определить пути оптимизации тепловой обработки. Создание прогрессивных технологий с минимальными затратами материальных и энергетических средств — одна из главных задач всех отраслей народного хозяйства, в том числе и строительной индустрии, к которой относится и производство строительных материалов и изделий. Одной из основных составных частей технологии строительной индустрии является тепловая обработка, на которую затрачивается около 30 % стоимости производства строительных материалов и изделии. Кроме того, тепловая обработка потребляет около 80 % от расходуемых на весь производственный цикл топливно-энергетических ресурсов. Таким образом, создание экономичных тепловых процессов, позволяющих получать изделия отличного качества с минимальными затратами топлива и электроэнергии, даст возможность существенно уменьшить капиталовложения в сферу строительства. Для создания таких тепловых процессов необходимы глубокие знания в области тепловой обработки строительных материалов и изделии, устройства тепловых установок, их конструирования и эксплуатации.

Рассматривая в целом процессы, проходящие в материалах и изделиях при тепловой обработке, необходимо помнить, что они являются следствием процессов, проходящих в тепловых установках. Изучение этой достаточно сложной взаимосвязи, порой еще мало исследованной, является главной задачей, которую приходится решать нашим ученым.

Первые попытки проанализировать работу тепловых установок были сделаны еще М. В. Ломоносовым и успешно продолжены В.Е. Грум-Гржимайло, который создал научную теорию, объясняющую работу печей и сушил. Д.И. Менделеев предложил формулу для определения теплотворной способности топлива.

Наука о процессах, проходящих в материалах при тепловой обработке, начала развиваться значительно позднее. Например, положения о кинетике процесса сушки были выдвинуты в 20-х годах П.С. Косовичем и А.В. Лебедевым применительно к испарению влаги из почвы. Представления о формах свели влагу с материалом, определяющие сушку, были впервые сформулированы акад. П.А. Ре-Линдером. Проф. Л.К. Рамзнн также впервые и 1918 г. предложил 1 – d – диаграмму влажного воздуха и создал методику расчета сушильных установок.

Большое значение для развития науки о сушильных процессах имели работы А.П. Ворошилова, М.И. Лурье, М.Ф. Казанского, П.Г. Ромапкова и А.В. Лыкова. Процессы, проходящие в материалах при обжиге, описаны в трудах Д.С. Беляпкина, П.П. Будникова, К.А. Нохратяна, О.П. Мчедлова-Петросяна н ряда других ученых. Эта область науки является пока еще наименее изученной.

Большое значение для производства сборного бетона и железобетона имеют исследования, связанные с тспловлажностной его обработкой, получившие широкое развитие в 50-е годы. Ряд основных положений об этих процессах сформулированы были несколько ранее А.В. Волженским и П.И. Боженовым, первым применительно к тепловой обработке силикатного, а вторым — автоклавного бетонов. С дальнейшим развитием представлений о процессах, проходящих при тепловлажностной обработке связаны труды С.А. Миронова, Л.А. Малининой, А.Д. Дмитровнча, И.Б. Заседателева, Н.Б. Марьямова и других ученых.

Накопленные знания о взаимосвязи тепловых процессов, проходящих в установках, с развивающимися в материалах, обширный экспериментальный материал, обобщенный на основе законов физики, химии и математики, создают основу для перехода к созданию моделей этих взаимосвязанных процессов и, следовательно, к решению конкретных задач по оптимизации тепловой обработки.

При производстве строительных изделий, деталей и материалов почти во всех случаях для перевода сырья в новое качество — готовую продукцию — применяют тепловую обработку. В большинстве случаев тепловая обработка дает возможность придать сырью новые, качественно отличные свойства, необходимые в строительстве. Такой процесс происходит за счет физических и физико-химических превращений в обрабатываемом материале, течение которых зависит от воздействия тепла.

Для теплового воздействия материал помещают в установку, которую в общем случае называют тепловой установкой. Различные физические и физико-химические превращения в материале требуют различного теплового воздействия. Поэтому в каждой тепловой установке создают свой необходимый для обработки продукции тепловой режим. Под тепловым режимом понимают совокупность условий теплового и массообменного воздействия на материал, как-то: изменение температуры среды, скорость течения газов или жидкости, омывающих материал, концентрацию газов, их давление. Следовательно, тепловые режимы представляют собой совокупность тепловых, массообменных и гидродинамических процессов, происходящих в тепловой установке.

Тепловой режим установки будет воздействовать на сырье и за счет физических и физико-химических превращений в нем оно превратится в готовую продукцию. Очевидно, изучая данную дисциплину, необходимо выяснить, как различные тепловые режимы воздействуют на разные материалы, какие процессы происходят в материалах при тепловой обработке, а также научиться определять наиболее эффективные режимы.

1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий

1.1 Материалы для бетона

Керамзит — это экологически чистый утеплитель. В переводе с греческого языка на русский «керамзит» переводится как «обожженная глина». Он представляет собой легкий пористый материал, получаемый при ускоренном обжиге легкоплавких глин.

По внешнему виду керамзит напоминает гравий, то есть представляет собой гранулы преимущественно округлой или овальной формы различного размера, поэтому часто его называют керамзитовый гравий. В технологическом процессе изготовления керамзита наблюдаются два явления: при резком тепловом ударе, подготовленной специальным образом глины, она вспучивается, чем достигается высокая пористость материала, а внешняя поверхность быстро оплавляется, что придает материалу достаточно высокую прочность и устойчивость к внешним воздействиям и создает почти герметичную оболочку. Поэтому качество керамзита во многом определяется точностью исполнения технологического процесса.

В зависимости от режима обработки глины можно получить керамзит различной насыпной плотности (объемным весом) — от 200 до 400 кг/куб. м. и выше. Чем ниже плотность вещества, тем он более пористый, а значит, обладает более высокими теплоизоляционными свойствами. Но тем сложнее при производстве получить необходимую прочность. Материал также характеризуется величиной керамзитовых гранул, которая колеблется от 2 до 40 мм, и в зависимости от их размера подразделяется на фракции, например 5-10 мм или 10-20 мм. Основываясь на размерах, продукцию делят на керамзитовые гравий, щебень и песок.

Гравий — это частицы округлой формы диаметром 5 — 40 мм, получаемые вспучиванием легкоплавких глин. Он морозоустойчив, огнестоек, не впитывает воду и не содержит вредных примесей. Керамзитовый щебень — это наполнитель произвольной формы (преимущественно угловатой) с размерами частиц 5 — 40 мм. Он получается путем дробления кусков вспученной массы керамзита.

Таким образом, керамзит — это уникальный керамический пористый гравий, который обладает следующими свойствами:

Легкость и высокая прочность;

Отличная тепло и звукоизоляция;

Огнеупорность, влаго- и морозоустойчивость;

Кислотоустойчивость, химическая инертность;

Долговечность;

Экологически чистый натуральный материал;

Высокое отношение качество/цена.

Анализ теплоизоляционных и механических свойств керамзита позволяет использовать этот материал на российском и зарубежном рынке для теплоизоляции крыш, полов и стен, фундаментов и подвалов. Установлено, что рациональное использование керамзита в качестве теплоизолирующего материала при строительстве обеспечивает сокращение теплопотерь более чем на 75 %.

В результате тепловой обработки продукты приобретают вкус и аромат, которые стимулируют выделение слюны и желудочного сока, что способствует лучшему усвоению пищи. Тепловая обработка обеззараживает пищу. Однако положительные стороны тепловой обработки продуктов проявляются лишь при правильном выборе способа обработки и строгом соблюдении режима.

Практика выработала много способов тепловой обработки продуктов, но все их можно разделить на два приема: основной и вспомогательный.

Основные приемы тепловой обработки

Основные приемы тепловой обработки – это варка и жаренье.

Варка осуществляется: с полным погружением продукта в жидкость, с частичным погружением (припускание), паром атмосферного и повышенного давления, в СВЧ-полях (объемный нагрев).

Основным способом варят в кастрюлях и стационарных котлах. Для уменьшения потерь питательных веществ жидкости наливают столько, чтобы она лишь покрывала продукты. Много жидкости берут только тогда, когда надо извлечь из продукта максимум растворимых веществ – при варке почек, сморчков и др. Варят при слабом кипении. Если блюдо готовится при пониженной температуре, применяют варку на мармитах, т. е. водяных банях. Очень быстро доходят до готовности продукты при повышенном давлении, такие условия варки создаются в автоклавах и скороварках.

При припускании жидкость покрывает продукт на 1/3 высоты, что снижает потери питательных веществ. Еще меньше потери питательных веществ при варке на пару. Для этого способа варки используют паровые коробки или сетчатые вкладыши в котлы. Продукт помещают на сетку выше уровня воды. Варка паром повышенного давления осуществляется в специальных пароварочных устройствах.

Для варки в СВЧ-полях существуют специальные шкафы. Продукты в них быстро доходят до готовности. В СВЧ-аппараты нельзя помещать металлическую посуду.

Конвекционная печь

Жаренье делится на: жаренье на нагретых поверхностях с жиром (основной способ) или без жира, в жире, замкнутом объеме, на жаренье в инфракрасных лучах и на открытом огне.

Жарят на сковородах, листах. Жир предохраняет продукты от пригорания и обеспечивает равномерный нагрев. Без жира жарят блинчики на механических сковородах.

Жаренье во фритюре . Жира берется в 8-10 раз больше, чем продукта, и нагревают его до 175–180 °C.

На открытом огне жарят многие национальные блюда. Полуфабрикаты помещают на вертелах и решетках над горящими дровяными углями в мангалах.

Жаренье в замкнутом объеме характерно для русской кухни. В жаровочных шкафах и духовках зажаривают птицу, крупные куски мяса и рыбы, пекут мучные изделия.

Жаренье в инфракрасных лучах . Их источниками служат светлые и темные нагреватели. Светлые – это зеркальные и трубчатые лампы. Трубчатые, к примеру, устанавливают в гриль-аппаратах. Темные источники – это электронагреватели и беспламенные газовые горелки.

Вспомогательные и комбинированные приемы

К вспомогательным приемам относят пассерование, ошпаривание и опаливание.

Пассерование – это прогрев продукта с жиром или без него. Например, для заправки соусов и супов пассеруют муку. Пассерование сохраняет красящие и ароматические вещества корнеплодов – они растворяются в жире. Пассерование лука удаляет из него остроту вкуса и раздражающий запах, но сохраняет эфирные масла.

Ошпаривание субпродуктов и осетровой рыбы облегчает их очистку. Ошпаривание предохраняет грибы и некоторые другие продукты от потемнения.

Опаливают на пламени горелок тушки птицы, поросят, субпродукты для удаления пуха и шерсти.

Комбинированные приемы придают продуктам особый аромат и сочность. Так, при тушении продукты сначала обжаривают, затем заливают соусами или бульонами и припускают. Эффективно ибрезирование , при котором продукты сначала припускают в жире с бульоном, потом обжаривают в жаровочных шкафах. Иногда продукты сначала варят, а затем обжаривают. А при запекании вареные, припущенные или жареные продукты заливают соусом и запекают.

Ссылка на основную публикацию